

PPS¹, MPE² Update

Presented by D.-J. Seo

Hydrology Laboratory
National Weather Service
Silver Spring, MD
May 22, 2002

1 (WSR-88D) Precipitation Processing Subsystem2 (AWIPS) Multi-Sensor Precipitation Estimator

Issues driving improvements in radarbased/aided precipitation estimation

- Systematic biases in
 - detection of precipitation
 - estimation of (in particular, large)
 precipitation amount given successful detection of precipitation

Mean field bias due, e.g., to lack of radar calibration

Hydrograph Simulation - Biased Precipitation Input

Use of Radar-Based/Aided Precipitation Estimates In Quantitative Hydrologic Forecasting

PPS - ORPG Bld 1

(Quick) Fix to the truncation problem [OHD]

PPS - ORPG Bld 2

- Mean Field Bias correction (MFB) [OHD]
- Radar Echo Classifier (REC) [NCAR,ROC,OST]

Product Tabular Data

Previous Page | Next Page

SUPPLEMENTAL PRECIPITATION DATA - RDA ID 303 05/08/02 21:03

VOLUME COVERAGE PATTERN = 21 MODE = A TIME CONT: PASSED

GAGE BIAS APPLIED - YES

BIAS ESTIMATE - 0.90

EFFECTIVE # G/R PAIRS - 11.47

MEMORT SPAN (HOURS) - 168.01

DATE/TIME LAST BIAS UPDATE - 05/08/02 21:05

NUMBER OF ISOLATED BINS _- 413

INTERPOLATED OUTLIERS - 0

REPLACED OUTLIERS - 0

AREA REDUCTION (PERCENT) - 39.88

BI-SCAN RATIO (RATIO) - 0.00

Product Tabular Data

Previous Page | Next Page

GAGE-RADAR MEAN FIELD BIAS TABLE

LAST BIAS UPDATE TIME: 05/08/02 21:05 BIAS APPLIED ? TES

ı						
l	MEMORT SPAN	EFFECTIVE NO.	AVG. GAGE	1	AVG. RADAR	MEAN FIELD
l	(HOURS)	G-R PAIRS	VALUE (MM)	1	VALUE (MM)	BIAS
l	0.001	0.000	2.794		1.189	2.351
l	1.000	0.000	2.794		1.189	2.351
l	2.000	0.000	2.794		1.189	2.351
l	3.001	0.000	2.790		1.189	2.347
l	4.998	0.000	2.758		1.196	2.307
l	10.004	0.012	2.672		1.252	2.134
l	168.006	11.471	2.230		2.477	0.900
l	719.819	107.348	2.436		2.992	0.814
ļ	2160.295	248.829	2.551		2.980	0.856

PPS - ORPG Bld 3

Digital Storm Total product (DSP) [OHD]

PPS - ORPG Bld 4

- Enhanced Preprocessing algorithm (EPRE) [ROC,OHD]
 - Supports new VCPs, REC, PDF, RCA
- Range Correction algorithm (RCA) [OHD]

Storm Total Rainfall - KATX, Unadjusted

Next					
Next Low					
Quit					
Rainfall					
Accumulation (Z=50R^1.6)					
< 0.0 mm					
< 12.7 mm					
< 25.4 mm					
< 38.1 mm					
< 50.8 mm					
< 63.5 mm < 76.2 mm					
< 101.6 mm					
< 127.0 mm					
< 152.4 mm					
< 177.8 mm					
< 203.2 mm					
< 228.6 mm					
< 254.0 mm					
< 304.8 mm < 355.6 mm					
< 406.4 mm					

Storm Total Rainfall - KATX, Adjusted

Next					
Next Low					
Quit					
Rainfall					
Accumulation					
(Z=50R^1.6)					
< 0.0 mm					
< 12.7 mm					
< 25.4 mm					
< 38.1 mm					
< 50.8 mm					
< 63.5 mm					
< 76.2 mm					
< 101.6 mm					
< 127.0 mm					
< 152.4 mm					
< 177.8 mm					
< 203.2 mm					
< 228.6 mm					
< 254.0 mm					
< 304.8 mm					
< 355.6 mm					
< 406.4 mm					

- ➤ 2 years of WSR-88D data from Tulsa (Oklahoma) under an efficient format (ASCII-RLE format, Kruger and Krajewski, 1997).
- An accompanying database of rain gauge observations

VALIDATION

Comparison between hourly rainfall accumulation from radar and gauge

Cold Season	Without correction	Mean VPR	Tested Method	Local VPR
RMS (mm)	0.87	0.76	0.70	0.68
BIAS (mm)	0.08	0.01	0.01	0.01

Warm Season	Without correction	Mean VPR	Tested Method	Local VPR
RMS (mm)	0.70	0.72	0.71	0.65
BIAS (mm)	0.02	0.02	0.01	0.01

Range-dependant bias reduction

Mayville, N.D., preliminary results

- Radar data: 90 days over a 2 years period
- Rain-gauge data: Daily accumulation from the North Dakota State water commission networ

Beyond ORPG Bld 4

- Snow Accumulation Algorithm (SAA) [USBR,ROC,OST]
- Improved beam blockage delineation and correction [lowa,OHD,ROC]
- Convective-stratiform separation [OHD]
 - Supports RCA
- Parallel precipitation processing
- Polarimetry

MPE - AWIPS Bld 5.1.2

- Currently runs at the NWS River Forecast Centers (RFC)
- Replaces Stage III at the RFCs
- To replace Stage II at the WFOs in Bld 5.2.2

Auto-Estimator

Rain Gauges

WFO

Multi-Sensor Precipitation Estimator (MPE)

RFC

MPE - AWIPS Bld 5.2.2

- Generation of Bias Table
- New D2D-like GUI
- Utilization of multi-hour rain gauge data
- Display of satellite-derived precipitation estimates

Where (radar) hydrology is headed...

Test Basin

Blue River Basin, OK

Test Results - Hydrographs @ Interior Points

In Closing...

- Radar-based/aided precipitation estimation activities are driven by the accuracy requirements that span a wide range of space-time scale (flash flood to climate)
- ORPG and CODE have (finally) opened the door for major scientific improvements
- First things first;
 - handle on systematic biases in detection and estimation (0th- and 1st-order errors)
 - provision of the quality/bias info as a part of the product

In Closing...(cont.)

- Planned and future improvements reflect where the science of hydrologic prediction is headed;
 - distributed hydrologic models (stringent accuracy requirement over a wide range of scale)
 - ensemble/probabilistic prediction (requirement for forecast uncertainty)
- Through;
 - multi-sensor
 - multi-radar
 - parallel estimation
 - rigorous quality/value assessment over a range of scales
 - provision of quality/uncertainty info as a part of the product